Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Immunol ; 12: 777858, 2021.
Article in English | MEDLINE | ID: covidwho-1581332

ABSTRACT

Background: Developing an understanding of the antibody response, seroprevalence, and seroconversion from natural infection and vaccination against SARS-CoV-2 will give way to a critical epidemiological tool to predict reinfection rates, identify vulnerable communities, and manage future viral outbreaks. To monitor the antibody response on a larger scale, we need an inexpensive, less invasive, and high throughput method. Methods: Here we investigate the use of oral mucosal fluids from individuals recovered from SARS-CoV-2 infection to monitor antibody response and persistence over a 12-month period. For this cohort study, enzyme-linked immunosorbent assays (ELISAs) were used to quantify anti-Spike(S) protein IgG antibodies in participants who had prior SARS-CoV-2 infection and regularly (every 2-4 weeks) provided both serum and oral fluid mucosal fluid samples for longitudinal antibody titer analysis. Results: In our study cohort (n=42) with 17 males and 25 females with an average age of 45.6 +/- 19.3 years, we observed no significant change in oral mucosal fluid IgG levels across the time course of antibody monitoring. In oral mucosal fluids, all the participants who initially had detectable antibodies continued to have detectable antibodies throughout the study. Conclusions: Based on the results presented here, we have shown that oral mucosal fluid-based assays are an effective, less invasive tool for monitoring seroprevalence and seroconversion, which offers an alternative to serum-based assays for understanding the protective ability conferred by the adaptive immune response from viral infection and vaccination against future reinfections.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Saliva/immunology , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Mouth Mucosa/immunology , SARS-CoV-2 , Seroconversion , Spike Glycoprotein, Coronavirus/immunology
2.
MAbs ; 13(1): 1987180, 2021.
Article in English | MEDLINE | ID: covidwho-1483313

ABSTRACT

The global health crisis and economic tolls of COVID-19 necessitate a panoply of strategies to treat SARS-CoV-2 infection. To date, few treatment options exist, although neutralizing antibodies against the spike glycoprotein have proven to be effective. Because infection is initiated at the mucosa and propagates mainly at this site throughout the course of the disease, blocking the virus at the mucosal milieu should be effective. However, administration of biologics to the mucosa presents a substantial challenge. Here, we describe bifunctional molecules combining single-domain variable regions that bind to the polymeric Ig receptor (pIgR) and to the SARS-CoV-2 spike protein via addition of the ACE2 extracellular domain (ECD). The hypothesis behind this design is that pIgR will transport the molecule from the circulation to the mucosal surface where the ACE ECD would act as a decoy receptor for the nCoV2. The bifunctional molecules bind SARS-Cov-2 spike glycoprotein in vitro and efficiently transcytose across the lung epithelium in human tissue-based analyses. Designs featuring ACE2 tethered to the C-terminus of the Fc do not induce antibody-dependent cytotoxicity against pIgR-expressing cells. These molecules thus represent a potential therapeutic modality for systemic administration of neutralizing anti-SARS-CoV-2 molecules to the mucosa.


Subject(s)
Antibodies, Viral , COVID-19 Drug Treatment , Receptors, Polymeric Immunoglobulin , SARS-CoV-2/immunology , Single-Chain Antibodies , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Antibodies, Viral/pharmacology , CHO Cells , COVID-19/genetics , COVID-19/immunology , Cricetulus , Dogs , Female , Humans , Madin Darby Canine Kidney Cells , Mice , Mouth Mucosa/immunology , Protein Domains , Receptors, Polymeric Immunoglobulin/genetics , Receptors, Polymeric Immunoglobulin/immunology , Receptors, Polymeric Immunoglobulin/therapeutic use , SARS-CoV-2/genetics , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Single-Chain Antibodies/pharmacokinetics , Single-Chain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Swine
3.
Cell ; 184(15): 4090-4104.e15, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1267621

ABSTRACT

The oral mucosa remains an understudied barrier tissue. This is a site of rich exposure to antigens and commensals, and a tissue susceptible to one of the most prevalent human inflammatory diseases, periodontitis. To aid in understanding tissue-specific pathophysiology, we compile a single-cell transcriptome atlas of human oral mucosa in healthy individuals and patients with periodontitis. We uncover the complex cellular landscape of oral mucosal tissues and identify epithelial and stromal cell populations with inflammatory signatures that promote antimicrobial defenses and neutrophil recruitment. Our findings link exaggerated stromal cell responsiveness with enhanced neutrophil and leukocyte infiltration in periodontitis. Our work provides a resource characterizing the role of tissue stroma in regulating mucosal tissue homeostasis and disease pathogenesis.


Subject(s)
Immunity, Mucosal , Mouth Mucosa/cytology , Mouth Mucosa/immunology , Neutrophils/cytology , Adult , Epithelial Cells/cytology , Gene Expression Regulation , Genetic Predisposition to Disease , Gingiva/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Microbiota , Myeloid Cells/cytology , Periodontitis/genetics , Periodontitis/immunology , Periodontitis/pathology , Single-Cell Analysis , Stromal Cells/cytology , T-Lymphocytes/cytology
4.
Neurosci Lett ; 748: 135694, 2021 03 23.
Article in English | MEDLINE | ID: covidwho-1188917

ABSTRACT

Patients with COVID-19 often complain of smell and taste disorders (STD). STD emerge early in the course of the disease, seem to be more common in SARS-CoV-2 infection than in other upper respiratory tract infections, and could in some cases persist for long after resolution of respiratory symptoms. Current evidence suggests that STD probably result from a loss of function of olfactory sensory neurons and taste buds, mainly caused by infection, inflammation, and subsequent dysfunction of supporting non-neuronal cells in the mucosa. However, the possible occurrence of other mechanisms leading to chemosensory dysfunction has also been hypothesized, and contrasting data have been reported regarding the direct infection of sensory neurons by SARS-CoV-2. In this mini-review, we summarize the currently available literature on pathogenesis, clinical manifestations, diagnosis, and outcomes of STD in COVID-19 and discuss possible future directions of research on this topic.


Subject(s)
COVID-19/complications , Olfaction Disorders/etiology , SARS-CoV-2/pathogenicity , Taste Disorders/etiology , COVID-19/immunology , COVID-19/virology , Humans , Mouth Mucosa/immunology , Mouth Mucosa/pathology , Olfaction Disorders/diagnosis , Olfaction Disorders/epidemiology , Olfaction Disorders/physiopathology , Olfactory Mucosa/immunology , Olfactory Mucosa/pathology , Olfactory Receptor Neurons/immunology , Olfactory Receptor Neurons/pathology , SARS-CoV-2/immunology , Smell/physiology , Taste/physiology , Taste Buds/immunology , Taste Buds/pathology , Taste Disorders/diagnosis , Taste Disorders/epidemiology , Taste Disorders/physiopathology
7.
Scand J Immunol ; 93(1): e12972, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-744804

ABSTRACT

Mounting evidence supports the importance of mucosal immunity in the immune response to SARS-CoV-2. Active virus replication in the upper respiratory tract for the first days of infection opens a new perspective in immunological strategies to counteract viral pathogenicity. An effective mucosal innate immune response to SARS-CoV-2 paves the way to an also effective adaptive immune response. A strong local immune response seems to be crucial in the initial contention of the virus by the organism and for triggering the production of the necessary neutralizing antibodies in sera and mucosal secretions. However, if the innate immune response fails to overcome the immune evasion mechanisms displayed by the virus, the infection will progress and the lack of an adaptive immune response will take the patient to an overreactive but ineffective innate immune response. To revert this scenario, an immune strategy based on enhancement of immunity in the first days of infection would be theoretically well come. But serious concerns about cytokine response syndrome prevent us to do so. Fortunately, it is possible to enhance immune system response without causing inflammation through immunomodulation. Immunomodulation of local immune response at the oropharyngeal mucosa could hypothetically activate our mucosal immunity, which could send an early an effective warning to the adaptive immune system. There are studies on immunotherapeutic management of upper respiratory tract infections in children that can place us in the right path to design an immune strategy able to mitigate COVID-19 symptoms and reduce clinical progression.


Subject(s)
COVID-19/immunology , Immunomodulation , Mouth Mucosa/immunology , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , Cytokine Release Syndrome/etiology , Humans , Immunity, Mucosal , Immunosenescence , Polyphenols/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL